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Abstract

Restricting the randomization of hard-to-change factors in industrial experiments is often

performed by employing a split-plot design structure. From an economic perspective, these

designs minimize the experimental cost by reducing the number of resets of the hard-to-

change factors. In this paper, unbalanced designs are considered for cases where the subplots

are relatively expensive and the experimental apparatus accommodates an unequal number

of runs per whole-plot. We provide construction methods for unbalanced second-order split-

plot designs that possess the equivalence estimation optimality property, providing best linear

unbiased estimates of the parameters; independent of the variance components. Unbalanced

versions of the central composite and Box-Behnken designs are developed. For cases where

the subplot cost approaches the whole-plot cost, minimal point designs are proposed and

illustrated with a split-plot Notz design.
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Introduction

Frequently, industrial experiments involve factors that are difficult, time consuming, or costly

to manipulate, referred to as hard-to-change (HTC) factors. Alternatively, some factors may

be relatively easy to manipulate, referred to as easy-to-change (ETC) factors. A split-plot

design structure is an efficient experimental approach that reduces the number of settings of

the HTC factors. We assign the HTC factors to the whole-plots and the ETC factors to the

subplots. For a more detailed development of split-plot designs see Montgomery (2004) and

Myers and Montgomery (2002).

Vining, Kowalski, and Montgomery (2005) and Parker, Kowalski, and Vining (2005a) pro-

posed design construction techniques for balanced equivalent estimation designs. To achieve

balance (same number of subplot runs in each whole-plot) in these designs, subplot runs

were replicated within each whole-plot. Unbalanced versions, with different whole-plot sizes,

reduce the replication of the subplot runs allowing a more efficient allocation of experimental

resources at the subplot level. In addition, when the whole-plot size is large, replicating sub-

plot runs to achieve balance generates an excessive number of subplot error variance degrees

of freedom. Unbalanced designs provide attractive alternatives to practitioners when they

are permissible.

In experimental design, we strive for small designs that meet our objectives and simulta-

neously minimize cost. Similarly in the split-plot context, the cost of the experiment is

an important criteria, however the definition of small is not as clear because we have two

types of experimental units with different associated costs. In many cases, the cost of the

whole-plot experimental units is much greater than that of the subplot units, making the

subplot runs essentially free. A balanced design is appropriate in this situation. However, if

the subplot runs are relatively expensive as compared to subplot runs, then an unbalanced
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design that simultaneously minimizes the number of whole-plots and subplot experimental

units is attractive from an economic perspective. Note that if the cost of the whole-plots

equals the cost of the subplots, then a completely randomized design is appropriate.

In addition to the cost considerations, the experimental apparatus plays a role in determining

whether an unbalanced design is a viable option. For example, if the subplot units are

specimens and the whole-plots represent the settings of a temperature chamber, then varying

the number of subplot experimental units may introduce an additional source of variability

due to changing the thermal load in the chamber.

In aerodynamic wind tunnel research, the configuration of the scaled test article usually re-

quires a partial mechanical disassembly, making it a HTC factor. Alternatively, the flow field

parameters are relatively ETC change (see Parker, Kowalski, and Vining (2005a, 2005b)).

To simulate flight conditions, there is a class of wind tunnel laboratories that operate in

a cryogenic pressurized environment. In these complex facilities, the setting of a whole-

plot factor condition is time consuming and expensive. This is due to the conditioning of

the environment that allows personnel access the test article and perform the configuration

change. Once the whole-plot conditions are set, maintaining these extreme environmental

conditions over time is costly and is directly proportional to the number of subplot runs. In

this example, the whole-plot size is not determined by the capacity of the experimental ap-

paratus, rather it represents the time to execute the subplot runs. An economical design for

this application simultaneously minimizes the number of whole-plots and the total number

of subplot runs.

In this paper, we review the conditions under which ordinary least squares is an appropriate

method of estimation for a second-order split-plot design. Based on these conditions, we

illustrate two systematic design construction strategies to build unbalanced equivalent esti-

mation designs from the central composite (CCD) and Box-Behnken (BBD). Replication of
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subplot runs within each whole-plot has been reduced over the balanced versions, thereby

reducing the size of some whole-plots. This development does not attempt to generalize all

of the admissible forms of unbalance. Instead, we focus on a strategy to reduce the size of

the whole-plots containing subplot replicates, especially those containing replicated subplot

centers. In addition, we discuss minimizing the total number of subplot runs by configuring

response surface minimal point designs into an equivalent estimation split-plot structure.

The notation D(w, k) is used to denote a design with w whole-plot (HTC) factors and k

subplot (ETC) factors. We use α and β to denote the distance to the axial points for the

subplot and whole-plot factors, respectively. We assume that the value of α is the same for

all of the subplot factors and similarly β is the same for all of the whole-plot factors. Designs

with combinations of 1 ≤ w ≤ 3 and 2 ≤ k ≤ 4 are considered to encompass many practical

situations. Note that unbalanced designs with k = 1 result in whole-plots of size one and

have not been included.

Second-Order Split-Plot Designs

Letsinger, Myers, and Lentner (1996) emphasized the need for research in the area of second-

order split-plot designs and focused on analysis issues; recommending the use of restricted

maximum likelihood for model estimation and inference. They proposed sorting a completely

randomized design (CRD) into a split-plot structure, which often results in an unbalanced de-

sign. Draper and John (1998) considered modification of the central composite design (CCD)

(Box and Wilson (1951)) to be executed in a split-plot mode to achieve near-rotatability.

Trinca and Gilmour (2001) studied multiple layers of split-plotting, called multistratum de-

signs, where the two-level split-plot design is a special case of this general class. They

employed a computer-intensive search algorithm to construct designs that maintained near-

orthogonality between strata. Goos and Vandebroek (2001, 2003) proposed the use of a
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point-exchange algorithm to construct D-optimal split-plot designs, which minimize the vol-

ume of the joint confidence region of regression coefficients. Goos (2002) provides a thorough

development of balanced and unbalanced D-optimal split-plot designs.

Vining, Kowalski, and Montgomery (2005), hereafter referred to as VKM, proposed a class

of second-order SPD’s where ordinary least squares (OLS) is equivalent to generalized least

squares (GLS) for model estimation. Moreover, they proposed augmentation of these designs

to provide pure-error estimates at both the whole-plot and subplot levels. Parker, Kowalski,

and Vining (2005a) provided a generalized derivation of the equivalence conditions that leads

to the development of systematic construction strategies and the ability to numerically verify

if an arbitrary design achieves the equivalence property. They illustrated the construction

of split-plot versions of the central composite design and a class of equivalent estimation

D-optimal designs. Parker, Kowalski, and Vining (2005b) extends the classes of designs to

include balanced split-plot versions of the Box-Behnken, equiradial, and small composite

design.

Equivalent estimation designs offer a number of attractive features. For example, the equiv-

alence property is independent of the variance components. Moreover, the parameter esti-

mates are BLUE (best linear unbiased estimators), independent of the variance components,

and robust to the assumption of normality. Model estimation of equivalent estimation de-

signs is simplified using OLS; eliminating the need for specialized software that is often times

unavailable to the industrial practitioner.

Equivalence Conditions

We define the general form of the model as

y = Xβ + δ + ε ,
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where y is the N × 1 vector of responses, X is the N × p model matrix with rank of p, β is

the p× 1 vector of coefficients, δ is the N × 1 vector of random whole-plot errors, ε is the

N × 1 vector of random subplot errors, N is the total number of subplot runs, and p is the

number of terms in the model including the intercept. We assume that δ + ε has a mean

of 0 and variance-covariance matrix Σ = σ2
ε I + σ2

δJb, where σ2
ε is the subplot error variance,

and σ2
δ is the whole-plot error variance. For an unbalanced design, Jb is a function of the

N × p incidence matrix Z expressed as Jb = ZZ′.

The matrix Jb has the form of

Jb =




1n11
′
n1

0 · · · 0
0 1n21

′
n2

· · · 0
...

...
. . .

...
0 0 · · · 1nm1′nm


 ,

where m is the number of whole-plots and ni is the number of subplot runs in the ith whole-

plot and denotes the length of the vector of ones.

Parker, Kowalski, and Vining (2005a) provide a detailed derivation of the equivalence con-

dition, summarized as follows. We assume that there is one level of split-plotting and the

design supports the specified model. The necessary and sufficient condition for equivalence

from McElroy (1967) (see also Graybill (1976, p. 209)) is

XF = ΣX,

where F is a p× p non-singular matrix. We define F to be

F = σ2
ε I + σ2

δK,

where,

K = (X′X)
−1

X′JbX. (1)
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It can be shown that the condition for equivalence can be expressed as

XK = JbX. (2)

The right-hand side of this equation sums the columns of the model matrix within each

whole-plot. These column totals, or unscaled whole-plot means, must equal the model matrix

multiplied by K to satisfy the condition of equivalence. Note that the equivalence condition

is independent of the variance components, σ2
ε and σ2

δ .

For a complete second-order model, let X be partitioned as

X =




1 WD1 WQ1
SD1 SQ1

1 WD2 WQ2
SD2 SQ2

...
...

...
...

...
1 WDm WQm

SDm SQm


 ,

where the first column corresponds to the intercept, WDi
denotes the whole-plot main ef-

fects and two-factor interactions, WQi
contains the whole-plot pure quadratics, SDi

includes

the subplot main effects, subplot by subplot two-factor interactions, and the whole-plot by

subplot interactions, and SQi
denotes the subplot pure quadratic terms of the ith whole-plot.

Consider a form of K for the unbalanced design as,

K(p×p) =




n0 0′ 0′ 0′ m′
0

0 nWID 0 0 0
uW 0 nWIQ 0 MW

0 0 0 0 0
uS 0 0 0 VS




. (3)

where n0 and nW are scalars, m0 is a vector of length k, ID and IQ are (w + w(w−1)
2

)× (w +

w(w−1)
2

) and w×w identity matrices, respectively, uW is a vector of length w, uS is a vector

of length k, MW is a w × k matrix, and VS is a k × k matrix. The definition of m0, MW,

and VS were defined by Parker, Kowalski, and Vining (2005a, 2005b) for balanced designs.

The proposed elements, uW, and uS, are specific to unbalanced designs and are defined in

this paper.
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Performing the multiplication in Equation (2) we obtain

XK =




1 WD1 WQ1
SD1 SQ1

1 WD2 WQ2
SD2 SQ2

...
...

...
...

...
1 WDm WQm

SDm SQm







n0 0′ 0′ 0′ m′
0

0 nWID 0 0 0
uW 0 nWIQ 0 MW

0 0 0 0 0
uS 0 0 0 VS




=

JbX =




n11 11′WD1 11′WQ1
11′SD1 11′SQ1

n21 11′WD2 11′WQ2
11′SD2 11′SQ2

...
...

...
...

...
nm1 11′WDm 11′WQm

11′SDm 11′SQm


 , (4)

where the vectors of ones have length ni in the ith whole-plot (explicit subscripts on these

vectors are omitted for clarity). From Equation (4), we see that the conditions to achieve

equivalence are isolated to the relationships between the within whole-plot column sums of

the intercept and the whole-plot and subplot pure quadratic terms. In addition, we see by

inspection that the designs possess first-order plus interaction orthogonal subplot designs.

If the design possess the equivalence property, then β̂OLS = β̂GLS and ordinary least squares

(OLS) is an appropriate method of estimation. Note that it is a rather remarkable result that

OLS would be an appropriate method of estimation for a class of unbalanced second-order

split-plot designs. The OLS estimate of the model coefficients is β̂OLS = (X′X)−1X′y. This

expression highlights that the parameter estimates from an equivalent estimation split-plot

design are independent of the variance components. By equivalence to GLS, the variance-

covariance matrix for the OLS estimate is (X′Σ−1X)−1.

Balanced Design Summary

Parker, Kowalski, and Vining (2005a) proposed two systematic design construction tech-

niques that enable the construction of equivalent estimation SPD’s derived from completely

randomized response surface designs. The first technique is a generalized version of the
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Table 1: Elements of K for Balanced Designs.
(VKM and MWP denotes method of construction,VS, m0, and φ denote the elements of K)

VKM-CCD VKM-BBD MWP-BBD

VS
n
k
1k1

′
k 2(k − 1)1k1

′
k 0

m0 0 0 4(k − 1)1k

φ 0 0 6− 4k

construction method proposed by Vining, Kowalski, and Montgomery (2005), subsequently

referred to as the VKM method. In the second method, we obtain designs that achieve the

minimum number of whole-plots to configure a classical CCD into a split-plot structure,

subsequently referred to as the MWP method. Based on the construction method and the

parent completely randomized design (CRD), we define the elements of K.

The elements of K in Equation (3), derived in Parker, Kowalski, and Vining (2005a, 2005b)

are summarized in Table 1. For the balanced case, n0 = nW = n and is the number of

subplot runs per whole-plot. We define MW to be of the form φ1w1′k. Note that the values

for the VKM construction method apply to cases where the number of subplot factors is a

power of 2, and the values for the MWP method apply to w = 1.

Unbalanced VKM Method CCD

To construct an unbalanced design, we first construct the balanced version. Then, we reduce

the size of the whole-plot containing all factors at their center level. We denote the size of

this whole-plot as nc in the derivation, and choose nc = 2 in the examples presented.

The construction of a VKM method CCD is described in Parker, Kowalski, and Vining

(2005a). We begin with a completely randomized CCD in w + k = f factors. The design

is rearranged such that the HTC factors remain constant within each WP and the subplot

9



designs are orthogonal for a first-order plus interaction model. The axial points (or star

points) of the HTC factors are placed in a WP by themselves. The center points, consisting

of all factors at their zero level in coded units, are also placed in a separate whole-plot. To

maintain balance, subplot runs are replicated as required within each whole-plot.

For an unbalanced VKM method CCD, when k is a power of 2, we define K by setting

m0 = 0 and MW = 0. Based on this form of K and Equation 4, the conditions that must

be satisfied are

nWWDi
= 1ni

1′ni
WDi

nWWQi
= 1ni

1′ni
WQi

∀ i (5)

and

1ni
1′ni

SQi
= SQi

VS

ni1ni
= n01ni

+ WQi
uW + SQi

uS ∀ i. (6)

For the conditions in Equation (5), since whole-plot factors are held constant within each

whole-plot, the column sums of the whole-plot model matrix equals ni times the level of

the whole-plot model term. Therefore, we find nW equals the number of subplot runs in

the whole-plots containing the HTC factors at their non-zero levels. Note that for this

construction method all whole-plots of this type must possess the same number of subplot

runs. These whole-plot model conditions are satisfied for any design by the nature of the

split-plot structure.

In Equation (6), the first condition involves the column sums of the subplot pure quadratic

terms and VS is defined in Table 1. The second condition expresses a relationship between

each row of the whole-plot model matrix and the number of subplot runs in that whole-plot,

ni. We denote the jth row of the model matrix for the whole-plot and subplot pure quadratic
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terms within the ith whole-plot as WQij
and SQij

, respectively. We define the general form

of uW to be λ1w and uS to be ρ1k, where λ and ρ are suitable constants chosen to satisfy

the equivalence conditions. Therefore, we express the unbalanced condition as

ni = n0 + λWQij
1w + ρSQij

1k ∀ i, j. (7)

To find expressions for n0, λ, and ρ, we consider the forms of WQij
and SQij

for each type

of whole-plot found in a CCD constructed according to the VKM method, summarized in

Table 2. Note that for the whole-plot and subplot axial runs the position of α2 and β2 will

change depending on the factor involved, however there is always a single element in each

row vector.

Table 2: VKM Method CCD Cases of Whole-Plot Type.
(WQij

is the jth row of the model matrix containing the WP pure quadratics,

SQij
is the jth row of the model matrix containing the SP pure quadratics,

ni is the number of subplot runs in the ith whole-plot,
α and β are the axial point distances for the ETC and HTC factors, respectively)

Case WP Type WQij
SQij

ni

c all centers
[

0 · · · 0
]
w

[
0 · · · 0

]
k

nc

1 WP centers, SP axials
[

0 · · · 0
]
w

[
α2 0 · · · 0

]
k

n1 = 2k

2 WP axials, SP centers
[

β2 0 · · · 0
]
w

[
0 · · · 0

]
k

n2 = nf

3 factorial
[

1 · · · 1
]
w

[
1 · · · 1

]
k

n3 = nf

From case (c) and Equation (7), we see that n0 = nc. Based on the structure of the row

vectors, we can express Equation (7) for each case as

Case (1): n1 − nc = ρα2

Case (2): n2 − nc = λβ2
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Case (3): n3 − nc = λw + ρk.

In a CCD, n1 = 2k and n2 = n3 = nf , where nf denotes the number of subplot runs in the

factorial whole-plots. Therefore, we find

ρ =
2k − nc

α2

λ =
nf − nc

β2
.

In addition from case (2) and (3), we see that λβ2 = λw + ρk. Solving this expression for α

and β provides,

α =

√√√√ k(2k − nc)

(nf − nc)
(
1− w

β2

) (8)

β =

√
wα2(nf − nc)

α2(nf − nc)− k(2k − nc)
. (9)

If we desire a design with α = β, then we obtain

α = β =

√
w +

k(2k − nc)

(nf − nc)
.

Performing an analysis of Equations (8) and (9), we find that our choice of α and β are

constrained by

α >

√
k(2k − nc)

nf − nc

β >
√

w .

In addition from Equations (8) and (9), we see that the relationship between α and β is

inversely proportional. Using these expressions, we can define K for an unbalanced VKM

CCD when k is a power of 2.
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Table 3: VKM Method Unbalanced Central Composite Design for D(2, 2).
(z1 and z2 are HTC factors, x1 and x2 are ETC factors, α and β are the distances

to the axial points for the ETC and HTC factors, respectively)

Whole-Plot z1 z2 x1 x2 Whole-Plot z1 z2 x1 x2

1 -1 -1 -1 -1 6 β 0 0 0
-1 -1 1 -1 β 0 0 0
-1 -1 -1 1 β 0 0 0
-1 -1 1 1 β 0 0 0

2 1 -1 -1 -1 7 0 -β 0 0
1 -1 1 -1 0 -β 0 0
1 -1 -1 1 0 -β 0 0
1 -1 1 1 0 -β 0 0

3 -1 1 -1 -1 8 0 β 0 0
-1 1 1 -1 0 β 0 0
-1 1 -1 1 0 β 0 0
-1 1 1 1 0 β 0 0

4 1 1 -1 -1 9 0 0 -α 0
1 1 1 -1 0 0 α 0
1 1 -1 1 0 0 0 -α
1 1 1 1 0 0 0 α

5 -β 0 0 0 10 0 0 0 0
-β 0 0 0 0 0 0 0
-β 0 0 0
-β 0 0 0

Consider a split-plot design with two hard-to-change factors, denoted by z1 and z2, and

two easy-to-change factors, denoted by x1 and x2. An unbalanced central composite design

(CCD) in coded units is provided in Table 3. For this design, we have w = k = 2, nc = 2,

nf = 4, and choose α = β = 2, resulting in n0 = 2, nW = 4, uW = 1
2
1w, and uS = 1

2
1k,

and VS = n
k
1k1

′
k = 21k1

′
k, where n refers to the number of subplot runs in the whole-plot

containing the subplot axial points.

A balanced version of this design is identical except that whole-plot number 10 contains

4 subplot runs. At first glance, the small reduction in design size may not appear to be

significant. However, we suggest augmenting the base design by replication of whole-plot
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number 10 to enable a pure-error based estimate of whole-plot error variance and to increase

the degrees of freedom for a pure-error estimate of subplot variance. For dfw degrees of

freedom for the whole-plot error estimate, dfw + 1 replicates of whole-plot 10 are required.

Therefore, we see that the reduction in design size is not merely 2 subplot runs, rather it

is 2(dfw + 1). The smaller size of these replicated whole-plots should be more appealing

to a practitioner who is contemplating the cost-benefit trade-off of performing replicated

whole-plots. This is especially true in the context that we are considering where the subplot

runs are costly.

When k is not a power of 2, an unbalanced design can be generated if we eliminate one set of

whole-plots containing the whole-plot factor at its axial level. The resulting design retains

the capability to estimate a complete second-order model, however it does not contain all

the design points found in a classical central composite design. An attractive feature of this

structure is that the distance to the axial points is unrestricted. For example, consider a

design for D(1, 3) in Table 4. The form of K for this type of design requires a non-zero MW,

which is not found in a classical VKM construction. A general development of this form

of K is not provided, however for the design in Table 4, K is defined by n0 = 2, nW = 8,

uW = −6 , uS = 41k, VS = 21k1
′
k, m0 = 0, and MW = 21′k. Note that this design has two

whole-plots with eight subplot runs, one with six subplot runs, and one with two subplot

runs.

A summary of unbalanced VKM CCD’s is provided in Table 5. The allotment of subplot runs

to the whole-plots is denoted by a whole-plot size followed by its frequency in parentheses.

For example, the design in Table 4 is denoted by 8(2), 6(1), 2(1). The D(w, 3) entries are

based on removing one set of whole-plot axial points, as previously discussed, and therefore

require two fewer whole-plots than other designs for the same w.
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Table 4: VKM Method Unbalanced Central Composite Design for D(1, 3).
(z1 is a HTC factor, x1, x2, and x3 are ETC factors, α is the distance

to the axial points for the ETC factors.)

Whole-Plot z1 x1 x2 x3

1 -1 1 -1 -1
-1 -1 1 -1
-1 -1 -1 1
-1 1 1 1
-1 -1 -1 -1
-1 1 1 -1
-1 1 -1 1
-1 -1 1 1

2 1 1 -1 -1
1 -1 1 -1
1 -1 -1 1
1 1 1 1
1 -1 -1 -1
1 1 1 -1
1 1 -1 1
1 -1 1 1

3 0 -α 0 0
0 α 0 0
0 0 -α 0
0 0 α 0
0 0 0 -α
0 0 0 α

4 0 0 0 0
0 0 0 0
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Table 5: Summary of Unbalanced Central Composite and Box-Behnken Equivalent Estima-
tion Split-Plot Designs by Construction Method.

(w is the number of HTC factors, k is the number of ETC factors, m is the number of
whole-plots, n is the number of subplot runs per whole-plot denoted by the whole-plot size

with its frequency in parentheses, and N is the total number of subplot runs.)

Factors VKM-CCD VKM-BBD MWP-BBD

w k m n(freq.) N m n(freq.) N m n(freq.) N
1 2 6 4(5), 2(1) 22 4 4(3), 2(1) 14 3 5(1), 4(2) 13
1 3 4 8(2), 6(1), 2(1) 24 4 12(3), 2(1) 38 3 13(1), 6(2) 25
1 4 6 8(5), 2(1) 42 4 24(3), 2(1) 74 3 25(1), 8(2) 41
2 2 10 4(9), 2(1) 38 10 4(9), 2(1) 38
2 3 8 6(1), 4(6), 2(1) 32 10 12(9), 2(1) 110
2 4 10 8(9), 2(1) 74 10 8(9), 2(1) 74
3 2 16 4(15), 2(1) 62 20 4(19), 2(1) 78
3 3 14 6(1), 4(12), 2(1) 56 19 4(18), 2(1) 74
3 4 16 8 (15), 2(1) 122 21 4(20), 2(1) 82
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Unbalanced VKM Method BBD

The Box-Behnken design is an attractive alternative to the central composite in the com-

pletely randomized context due to its competitive size and utilization of three-levels. In the

split-plot context, the three-levels are particularly appealing for the HTC factors. In this

section, we consider applying the VKM construction method to the BBD.

As a result of our construction philosophy to utilize the minimum number of whole-plots, the

number of subplot runs per whole-plot increases with the number of subplot factors. These

large whole-plots may not be practical in certain applications, thereby requiring a design

with additional whole-plots of a smaller size. Nevertheless, in this section we assume that

these minimum whole-plot designs are permissible and consider methods to reduce the size

of the whole-plots containing replicated subplot runs.

To minimize the number of whole-plots, we construct a single whole-plot with the HTC

factor set at its center level. The size of this whole-plot, for f ≤ 5, is

nmax = 4

(
k
2

)
= 2k(k − 1).

To achieve balance, the subplot designs are replicated as required in the other whole-plots.

The general form of K and the conditions expressed in Equation (6) hold for the BBD case.

Following a similar approach as the CCD, we summarize the forms of WQij
and SQij

found

in each type of whole-plot in Table 6. For cases (1)-(3), the position of the ones will change

depending on the factors involved, however the form is consistent. Note that case (3) is not

present when w = 1.

From case (c) and Equation (7), we see that n0 = nc. From case (1), we find

n1 − nc = 2ρ

ρ =
n1 − nc

2
=

2k(k − 1)− nc

2
.
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Table 6: VKM Method BBD Whole-Plot Types.
(WQij

is the jth row of the model matrix containing the WP pure quadratics,

SQij
is the jth row of the model matrix containing the SP pure quadratics,

ni is the number of subplot runs in the ith whole-plot)
Case WQij

SQij
ni

c
[

0 · · · 0
]
w

[
0 · · · 0

]
k

nc

1
[

0 · · · 0
]
w

[
1 1 0 · · · 0

]
k

n1 = 4

(
k
2

)
= 2k(k − 1)

2
[

1 0 · · · 0
]
w

[
1 0 · · · 0

]
k

n2

3
[

1 1 0 · · · 0
]
w

[
0 · · · 0

]
k

n3

For case (2), we find

n2 − n0 = λ + ρ

λ = n2 − n0 − ρ .

Similarly for case (3), we find

λ =
2k(k − 1)− nc

2
.

Note that if n1 = n2 = n3 = 2k(k − 1), then λ = ρ.

Consider a design for the D(1, 4) case given in Table 7. To construct this design, we begin

with a balanced BBD consisting of 4 whole-plots of size 24. In whole-plots 1 and 2, there are

3 replicates of the base subplot design to balance the design. The vector notation denotes

two subplot runs for each row in whole-plots 1 and 2. As with the CCD, we reduce the size

of the whole-plot containing all factors at their center level. The number of subplot runs is

reduced by 22(dfw+1), which is very significant due to the large whole-plot size. Moreover, it

is apparent that the likelihood of running whole-plot replicates is improved considerably. We

note that the extreme unbalancing in this design may not be desirable in many experimental

circumstances, however it does illustrate the achievable reduction in subplot replication.
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Table 7: VKM Method Unbalanced Box-Behnken Design for D(1, 4).
(z1 is a HTC factor, x1, x2, x3 and x4 are ETC factors.)

Whole-Plot z1 x1 x2 x3 x4 Whole-Plot z1 x1 x2 x3 x4

1 −1 ±1 0 0 0 3 0 0 -1 -1 0
−1 0 ±1 0 0 0 0 1 -1 0
−1 0 0 ±1 0 0 0 -1 1 0
−1 0 0 0 ±1 0 0 1 1 0
−1 ±1 0 0 0 0 -1 0 0 -1
−1 0 ±1 0 0 0 1 0 0 -1
−1 0 0 ±1 0 0 -1 0 0 1
−1 0 0 0 ±1 0 1 0 0 1
−1 ±1 0 0 0 0 0 0 -1 -1
−1 0 ±1 0 0 0 0 0 1 -1
−1 0 0 ±1 0 0 0 0 -1 1
−1 0 0 0 ±1 0 0 0 1 1

2 +1 ±1 0 0 0 0 -1 -1 0 0
+1 0 ±1 0 0 0 1 -1 0 0
+1 0 0 ±1 0 0 -1 1 0 0
+1 0 0 0 ±1 0 1 1 0 0
+1 ±1 0 0 0 0 0 -1 0 -1
+1 0 ±1 0 0 0 0 1 0 -1
+1 0 0 ±1 0 0 0 -1 0 1
+1 0 0 0 ±1 0 0 1 0 1
+1 ±1 0 0 0 0 -1 0 -1 0
+1 0 ±1 0 0 0 1 0 -1 0
+1 0 0 ±1 0 0 -1 0 1 0
+1 0 0 0 ±1 0 1 0 1 0

4 0 0 0 0 0
0 0 0 0 0
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For the design in Table 7, we have w = 1, k = 4, nc = 2, resulting in n0 = 2, nW = 24,

uW = 11 , uS = (11)1k, VS = 61k1
′
k, m0 = 0, and MW = 0.

A potentially unattractive feature of the design in Table 7 is the replicated subplot designs in

whole-plots 1 and 2. We can reduce the size of these whole-plots by adding a non-zero MW

matrix to K. A general development of this form of K is not provided, however to illustrate

this approach consider the design in Table 8. The first two whole-plots now contain 8 subplot

runs each with no replication. For this design, K is defined by n0 = 2, nW = 8, uW = −5,

uS = (11)1k, VS = 61k1
′
k, MW = −41′k, and m0 = 0.

The unbalanced design in Table 8 has achieved a significant reduction with m = 4 and

N = 42 compared to Table 7 with m = 4 and N = 70, and the balanced version, which

requires m = 4 and N = 96. Even though the number of whole-plots has not been reduced,

the reduction in design size and particularly the size of the whole-plots that are proposed to

be replicated, makes this design an attractive alternative.

A summary table of unbalanced VKM BBD’s is provided in Table 5. For D(1, k), these

designs require the same or fewer whole-plots than their CCD competitors, however the

larger whole-plot size may not be permissible in some applications. In contrast, the D(3, k)

designs require additional whole-plots over the unbalanced CCD’s.

Unbalanced MWP Method BBD

In this section, we propose a class of unbalanced equivalent estimation designs that requires a

minimum number of whole-plots to configure a completely randomized BBD into a split-plot

structure for the w = 1 case. We begin with a balanced design constructed using the MWP

method. This method does not require the subplot centers to be contained in a whole-plot by

themselves, rather they can be included in other whole-plots and added one-by-one without
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Table 8: Minimum Size VKM Method Unbalanced Box-Behnken Design for D(1, 4).
(z1 is a HTC factor, x1, x2, x3 and x4 are ETC factors.)

Whole-Plot z1 x1 x2 x3 x4

1 −1 ±1 0 0 0
−1 0 ±1 0 0
−1 0 0 ±1 0
−1 0 0 0 ±1

2 +1 ±1 0 0 0
+1 0 ±1 0 0
+1 0 0 ±1 0
+1 0 0 0 ±1

3 0 0 -1 -1 0
0 0 1 -1 0
0 0 -1 1 0
0 0 1 1 0
0 -1 0 0 -1
0 1 0 0 -1
0 -1 0 0 1
0 1 0 0 1
0 0 0 -1 -1
0 0 0 1 -1
0 0 0 -1 1
0 0 0 1 1
0 -1 -1 0 0
0 1 -1 0 0
0 -1 1 0 0
0 1 1 0 0
0 0 -1 0 -1
0 0 1 0 -1
0 0 -1 0 1
0 0 1 0 1
0 -1 0 -1 0
0 1 0 -1 0
0 -1 0 1 0
0 1 0 1 0

4 0 0 0 0 0
0 0 0 0 0
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disturbing the equivalence property of the design.

To define K for an MWP Method BBD, we set VS = 0 in Equation (3). Based on this form

of K and Equation (4), the conditions that must be satisfied, beyond those related to the

HTC factors that are satisfied by the split-plot structure, are

1ni
1′ni

SQi
= 1ni

m′
0 + WQi

MW

ni1n = n01ni
+ WQi

uW ∀ i. (10)

The first condition is unchanged from the balanced case where m0 and MW are defined

in Table 1. The second is similar to the VKM unbalanced case, except that there are no

conditions on the subplot pure quadratic terms. Recall the form of uW is λ1w, and with

w = 1 we have uW as a scalar equal to λ. We rewrite the second condition in Equation (10)

for w = 1 as

ni − n0 = λWQij
∀ i, j ,

where WQi
is a n × 1 vector for w = 1 of the form z2

11ni
. Therefore, for a BBD we only

need to consider the two possible values of z2
1 as 0 and 1. Table 9 summarizes the two cases

of whole-plot types. For z2
1 = 0, we see that n0 = n1 = 2k(k − 1) + nc. For z2

1 = 1, we find

λ = n2 − n0

λ = 2k − [2k(k − 1) + nc]

λ = − (
2k2 − 4k + nc

)
.

Consider a design for D(1, 3) in Table 10. This design was derived from a balanced design

with m = 3, n = 13, and N = 39. The unbalanced version maintains 3 whole-plots, however

the overall size has been reduced to N = 26, by removing the replicated design points in the

first two whole-plots. This is a similar construction as the design in Table 8 except we have
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Table 9: MWP Method BBD Whole-Plot Types.
Case WQij

ni

1 0 n1 = 2k(k − 1) + nc

2 1 n2 = 2k

now been able to include the subplot centers in whole-plot number 3, instead of requiring

an additional whole-plot. For the design in Table 10, K is defined by n0 = 14, nW = 6,

uW = −8, m′
0 = 81k, MW = −61′k, and VS = 0.

Note that a completely randomized version of a BBD with f = 4 contains N = 24 + nc

design points. Therefore, the equivalent estimation design in Table 10 achieves the minimum

number of whole-plots to support a second-order model and requires no additional subplot

runs over the completely randomized version. In fact, this is a general result for MWP

method BBD’s for D(1, k), k ∈ {2, 3, 4}.

A summary table of unbalanced MWP method BBD’s is provided in Table 5. To achieve

the minimum number of whole-plots, these designs require a large number of subplot runs

per whole-plot, similar to the VKM method BBD’s.

Minimal Point Designs

As previously discussed, in some experimental situations the cost of the whole-plots ap-

proaches that of the subplots and both are expensive. In this situation, it is desirable to

simultaneously minimize the number of whole-plots and the total number of subplot runs.

Therefore, a saturated or near-saturated designs might be considered. As in the CRD con-

text, we recommend the use of the CCD or BBD, unless they are cost prohibitive. In

addition, we recommend a cost comparison to conducting a completely randomized experi-

ment, as proposed by Bisgaard (2000), which provides increased precision of the whole-plot

23



Table 10: MWP Method Unbalanced Box-Behnken Design for D(1, 3).
(z1 is a HTC factor, x1, x2, and x3 are ETC factors.)

Whole-Plot z1 x1 x2 x3

1 -1 -1 0 0
-1 1 0 0
-1 0 -1 0
-1 0 1 0
-1 0 0 -1
-1 0 0 1

2 1 -1 0 0
1 1 0 0
1 0 -1 0
1 0 1 0
1 0 0 -1
1 0 0 1

3 0 0 -1 -1
0 0 -1 1
0 0 1 -1
0 0 1 1
0 -1 -1 0
0 -1 1 0
0 1 -1 0
0 1 1 0
0 -1 0 -1
0 -1 0 1
0 1 0 -1
0 1 0 1
0 0 0 0
0 0 0 0
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factors, versus the split-plot structure.

Goos (2002) highlights that all saturated designs are equivalent. For a saturated design, we

have N design points to estimate a model with p parameters where N = p. Therefore, the

model matrix, X is a square full rank matrix. The OLS estimate is

β̂OLS = (X′X)−1X′y = X′−1(X′)−1X′y = X−1y.

The GLS estimate is

β̂GLS = (X′Σ−1X)−1X′Σ−1y = X−1Σ(X′)−1X′Σ−1y = X−1y,

which is the same as the OLS estimate. Even though all saturated designs are equivalent,

some are more suitable for augmentation to provide pure-error estimates of the variance

components and lack-of-fit degrees of freedom while maintaining the equivalence property.

In the previous sections, design construction was based on an analytical derivation of the

form of the K matrix to satisfy the equivalence condition for a particular design structure.

As previously mentioned, Equation (2) can also be used to numerically test the equivalence

of any arbitrary split-plot design without knowledge of the form of K. If the design is

found to be equivalent, then K can be computed directly from Equation (1). Computing

K provides insight into permissible augmentation strategies that maintain the equivalence

property. For example, we can determine if the design can be augmented by adding subplot

centers one-by-one or a whole-plot containing all factors at their center level.

Many of these minimal point designs feature non-orthogonal subplot designs. While orthog-

onality is desirable and was maintained in the CCD and BBD constructions, these designs

demonstrate the flexibility in generating equivalent estimation designs. In addition, to ob-

tain minimal point split-plot designs, we have relaxed our constraint of nmin = 2, allowing

whole-plots of size one, which are typically undesirable for HTC factors.
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Table 11: Notz Saturated Design Design for D(1, 3).
(z1 is a HTC factor, x1, x2, and x3 are ETC factors.)

Whole-Plot z1 x1 x2 x3

1 -1 1 1 -1
-1 1 -1 1
-1 -1 1 1
-1 1 1 1
-1 -1 -1 -1

2 1 1 -1 -1
1 -1 1 -1
1 -1 -1 1
1 1 1 -1
1 1 -1 1
1 -1 1 1
1 0 0 0

3 0 1 0 0
0 0 1 0
0 0 0 1

In this section, we consider the minimal point designs proposed by Notz (1982) to illustrate

the utility of the numerical verification procedure. Consider a saturated Notz design for

D(1, 3) in Table 11. This design can be augmented to provide 1 degree of freedom for

lack-of-fit (dfLoF ), by including a subplot center run to whole-plot number 3, or by adding

a subplot run to whole-plot number 2 with all of the subplot factors at their low level,
[ −1 −1 −1

]
. Both of these augmentations can be verified to possess the equivalence

property using Equation (2). A similar procedure can be employed for other numbers of

factors. When the augmentation is not intuitive, a D-optimal augmentation strategy was

applied to add the minimum number of design points while maintaining the equivalence

property. Table 12 contains a summary of Notz equivalent estimation split-plot designs.

Following a similar approach, equivalent estimation split-plot versions of the Hoke (1974),

Box and Draper (1974), hybrid proposed by Roquemore (1976), and small composite pro-
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Table 12: Summary of Notz Equivalent Estimation Split-Plot Designs.

(w is the number of HTC factors, k is the number of ETC factors, m is the number of
whole-plots, n is the number of subplot runs per whole-plot denoted by the whole-plot size
with its frequency in parentheses, N is the total number of subplot runs, and dfLoF is the

number of lack-of-fit degrees of freedom.)

Factors Saturated Augmented

w k m n(freq.) N m n(freq.) N dfLoF

1 1 3 3(1), 2(1), 1(1) 6 3 3(1), 2(2) 7 1
1 2 3 5(1), 3(1), 2(1) 10 3 5(1), 4(1), 2(1) 11 1
1 3 3 7(1), 5(1), 3(1) 15 3 7(1), 5(1), 4(1) 16 1
1 4 3 11(1), 8(1), 2(1) 21
2 1 7 2(3), 1(4) 10 7 2(4), 1(3) 11 1
2 2 7 3(3), 2(2), 1(2) 15 7 4(1), 3(2), 2(2), 1(2) 16 1
2 3 7 6(1), 4(3), 1(3) 21
2 4 7 9(1), 5(3), 2(1), 1(2) 28 7 9(1), 5(3), 3(1), 2(1), 1(1) 30 2
3 1 12 2(3), 1(9) 15 12 2(8), 1(4) 20 5
3 2 12 2(9), 1(3) 21
3 3 12 4(1), 3(4), 2(5), 1(2) 28
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posed by Hartley (1959), Draper (1985) and Draper and Lin (1990) minimal point response

surface designs have been constructed.

The ability to numerically verify that a design provides equivalent estimates using Equa-

tion (2) has proven useful in exploring other families of RSM designs that do not provide

a consistent analytical form of K, for example classes of D-optimal designs. In addition,

numerical verification provides a convenient method to determine if model projection has

disturbed the equivalence property.

Concluding Remarks

In this paper, we have relaxed the assumption of balance and demonstrated that unbalanced

equivalent estimation split-plot designs can be constructed from families of completely ran-

domized response surface designs. We have shown how to start with a balanced design and

reduce the size of the whole-plots that contain subplot replicates. These unbalanced designs

are applicable when the subplot cost becomes relatively expensive, approaching the cost of

the whole-plots, and the experimental apparatus is suitable for unequal whole-plot sizes.

The construction methods discussed in this paper provide a flexible approach to transform

completely randomized response surface designs into a split-plot structure that provides best

linear unbiased estimates and simplified estimation. A comprehensive catalog containing

split-plot versions of many classical response surface designs is available at the author’s

website, and includes balanced and unbalanced versions. The straightforward and intuitive

nature of these construction methods coupled with the pre-built catalog makes equivalent

estimation split-plot designs an attractive option for practitioners.
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